Allow the user to drag each piece into the outline area. Allow the piece to be rotated in 90 degree increments.
Option 1:
If a piece is in the correct location in the overall puzzle, and at the correct angle, AND connected to another piece, then snap it into place with some user feedback. The outside edge of the puzzle can count for a connection to edge pieces.
Option 2:
A neighbor is an adjacent puzzle piece when the puzzle is assembled. When the puzzle pieces are mixed up, they still have the same neighbors. Each puzzle piece (except the edge pieces) has four neighbors.
If a piece is near one of its neighbors at the correct angle relative to that neighbor, then snap it to the other piece. Then allow the two (or more) pieces to be dragged around as a unit, as is done with a single piece. This would allow the user to assemble subsections of the puzzle in any area, much like is done with a physical jigsaw puzzle, and connect the subsections with one another.
You can check the piece being moved to its four neighbors to see if they are close enough to snap together. If a piece has its proper edge close enough to the proper edge of its neighbor, at the same angle, then they match.
There are several ways to check relative locations. One way would be to temporarily rotate the coordinates of the piece you are testing so it is upright, then rotate the coordinates of all its desired neighbors, also temporarily, to the same angle. (Use the same center of rotation for all the rotations.) Then you can easily test to see if they are close enough to match. If the user is dragging a subassembly, then you will need to check each unmatched edge in the subassembly.
Option 2 is more complex and more realistic. Option 1 can be further simplified by omitting the rotation of pieces and making every piece the proper angle initally.