You are using a while loop. With recursion, this is done implicitly.
You have to split the algorithm in small parts.
[] represents left, {} represents right.
[1] 2 3 4 5 6 7 8 9 0 9 8 7 6 5 4 3 2 {1} -->Level 0
1 [2] 3 4 5 6 7 8 9 0 9 8 7 6 5 4 3 {2} 1 -->Level 1
1 2 [3] 4 5 6 7 8 9 0 9 8 7 6 5 4 {3} 2 1 -->Level 2
1 2 3 [4] 5 6 7 8 9 0 9 8 7 6 5 {4} 3 2 1 -->Level 3
1 2 3 4 [5] 6 7 8 9 0 9 8 7 6 {5} 4 3 2 1 -->Level 4
1 2 3 4 5 [6] 7 8 9 0 9 8 7 {6} 5 4 3 2 1 -->Level 5
1 2 3 4 5 6 [7] 8 9 0 9 8 {7} 6 5 4 3 2 1 -->Level 6
1 2 3 4 5 6 7 [8] 9 0 9 {8} 7 6 5 4 3 2 1 -->Level 7
1 2 3 4 5 6 7 8 [9] 0 {9} 8 7 6 5 4 3 2 1 -->Level 8
1 2 3 4 5 6 7 8 9 {[0]} 9 8 7 6 5 4 3 2 1 -->Level 9
So, tester
will continue until:
- We've reached the middle of the word.
- The word is not a palindrome
Example of case 2:
[1] 2 3 A 5 6 7 8 9 0 9 8 7 6 5 4 3 2 {1}
1 [2] 3 A 5 6 7 8 9 0 9 8 7 6 5 4 3 {2} 1
1 2 [3] A 5 6 7 8 9 0 9 8 7 6 5 4 {3} 2 1
1 2 3 [A] 5 6 7 8 9 0 9 8 7 6 5 {4} 3 2 1 --> !!!
I thought this method would be very helpful for the understanding of how is this recursion working
public static String positions(String word, int l, int r) {
char[] a = word.toCharArray();
String s = "";
// [letter] if left, {} if right, [{}] if both
for (int i = 0; i < a.length; i++) {
if (l == i && r == i) {
s += "{[" + a[i] + "]}";
} else if (l == i) {
s += "[" + a[i] + "]";
} else if (r == i) {
s += "{" + a[i] + "}";
} else {
s += a[i];
}
s+=" ";
}
return s;
}
And finally, the tester
method.
public static boolean tester(String str, int left, int right) {
System.out.println(positions(str, left, right) +" tester(str, "+left +", "+right+")");
if (left>=right) // case 1
return true; // that's ok, we've reached the middle
// the middle was not reached yet.
// is the condition satisfied?
if (str.charAt(left) == str.charAt(right)) {
// yes. So, lets do it again, with the parameters changed
return tester(str, left + 1, right - 1);
}
//the condition was not satisfied. Let's get out of here.
else {
return false;
}
}
Some outputs:
Enter a potential palindrome:
1234567890987654321
[1] 2 3 4 5 6 7 8 9 0 9 8 7 6 5 4 3 2 {1} tester(str, 0, 18)
1 [2] 3 4 5 6 7 8 9 0 9 8 7 6 5 4 3 {2} 1 tester(str, 1, 17)
1 2 [3] 4 5 6 7 8 9 0 9 8 7 6 5 4 {3} 2 1 tester(str, 2, 16)
1 2 3 [4] 5 6 7 8 9 0 9 8 7 6 5 {4} 3 2 1 tester(str, 3, 15)
1 2 3 4 [5] 6 7 8 9 0 9 8 7 6 {5} 4 3 2 1 tester(str, 4, 14)
1 2 3 4 5 [6] 7 8 9 0 9 8 7 {6} 5 4 3 2 1 tester(str, 5, 13)
1 2 3 4 5 6 [7] 8 9 0 9 8 {7} 6 5 4 3 2 1 tester(str, 6, 12)
1 2 3 4 5 6 7 [8] 9 0 9 {8} 7 6 5 4 3 2 1 tester(str, 7, 11)
1 2 3 4 5 6 7 8 [9] 0 {9} 8 7 6 5 4 3 2 1 tester(str, 8, 10)
1 2 3 4 5 6 7 8 9 {[0]} 9 8 7 6 5 4 3 2 1 tester(str, 9, 9)
true
Test another palindrome (y/n)?
y
Enter a potential palindrome:
12345A678654321
[1] 2 3 4 5 A 6 7 8 6 5 4 3 2 {1} tester(str, 0, 14)
1 [2] 3 4 5 A 6 7 8 6 5 4 3 {2} 1 tester(str, 1, 13)
1 2 [3] 4 5 A 6 7 8 6 5 4 {3} 2 1 tester(str, 2, 12)
1 2 3 [4] 5 A 6 7 8 6 5 {4} 3 2 1 tester(str, 3, 11)
1 2 3 4 [5] A 6 7 8 6 {5} 4 3 2 1 tester(str, 4, 10)
1 2 3 4 5 [A] 6 7 8 {6} 5 4 3 2 1 tester(str, 5, 9)
false
Test another palindrome (y/n)?
In the main
method,
System.out.println(tester(str, left, right));
In order to see the true/false
output