2

I want to calculate the distances (dissimilarities) between the rows of two data frames in order to find the closest cluster for each observation. Because I have factors and numerical variables, I'm using Gower distance. As I want to compare two data frames (and not the dissimilarities between the rows of one matrix), gower.dist would be the function I need. However, when I implemented it, I realized that the results differ from the ones I get when I use daisy's gower, having the rows bound together and looking at the part of the dissimilarity matrix of interest.

I only provide a sample of my data here but when I calculated the dissimilarities with all data, gower.dist often resulted in dissimilarities of zero although the corresponding rows were not equal to each other. Why? And what could be the reason for the different results? In my opinion, daisys's gower is working correct and gower.dist isn't (in this example).

library(cluster)
library(StatMatch)

# Calculate distance using daisy's gower 
daisyDist <- daisy(rbind(df,cent),metric="gower")
daisyDist <- as.matrix(daisyDist)
daisyDist <- daisyDist[(nrow(df)+1):nrow(daisyDist),1:nrow(df)] #only look at part where rows from df are compared to (rows of) cent

# Calculate distance using dist.gower
gowerDist <- gower.dist(cent,df)

with the following data

df <- structure(list(searchType = structure(c(NA, 1L, 1L, 1L, 1L), .Label = c("1", "2"), class = "factor"), roomMin = structure(c(4L, 1L, 1L, 6L, 6L), .Label = c("10", "100", "150", "20", "255", "30", "40", "50", "60", "70", "Missing[NoInput]"), class = "factor"), roomMax = structure(c(8L, 8L, NA, 10L, 9L), .Label = c("10", "100", "120", "150", "160", "20", "255", "30", "40", "50", "60", "70", "80", "90", "Missing[NoInput]"), class = "factor"), priceMin = c(NA, 73, 60, 29, 11), priceMax = c(35, 11, 1, 62, 23), sizeMin = structure(c(5L, 5L, 5L, 6L, 6L), .Label = c("100", "125", "150", "250", "50", "75", "Missing[NoInput]"), class = "factor"), sizeMax = structure(c(1L, 6L, 5L, 3L, 1L), .Label = c("100", "125", "150", "250", "50", "75", "Missing[NoInput]"), class = "factor"), longitude = c(6.6306, 7.47195, 8.5562, NA, 8.569), latitude = c(46.52425, 46.9512, 47.37515, NA, 47.3929), specificSearch = structure(c(1L, 1L, 1L, 1L, 1L), .Label = c("0", "1"), class = "factor"), objectType = structure(c(NA, 2L, 2L, 2L, 2L), .Label = c("1", "2", "3", "Missing[]"), class = "factor")), .Names = c("searchType", "roomMin", "roomMax", "priceMin", "priceMax", "sizeMin", "sizeMax", "longitude", "latitude", "specificSearch", "objectType"), row.names = c(112457L,  94601L, 78273L, 59172L, 117425L), class = "data.frame")                                                                                                                                                                
cent <- structure(list(searchType = structure(c(1L, 1L, 1L), .Label = c("1", "2"), class = "factor"), roomMin = structure(c(1L, 4L, 4L), .Label = c("10", "100", "150", "20", "255", "30", "40", "50", "60", "70", "Missing[NoInput]"), class = "factor"), roomMax = structure(c(6L, 9L, 8L), .Label = c("10", "100", "120", "150", "160", "20", "255", "30", "40", "50", "60", "70", "80", "90", "Missing[NoInput]"), class = "factor"), priceMin = c(60, 33, 73), priceMax = c(103, 46, 23), sizeMin = structure(c(1L, 5L, 5L), .Label = c("100", "125", "150", "250", "50", "75", "Missing[NoInput]"), class = "factor"), sizeMax = structure(c(1L, 2L, 1L), .Label = c("100", "125", "150", "250", "50", "75", "Missing[NoInput]"), class = "factor"), longitude = c(8.3015, 7.42765, 7.6104), latitude = c(47.05485, 46.9469, 46.75125), specificSearch = structure(c(1L, 1L, 1L), .Label = c("0", "1"), class = "factor"), objectType = structure(c(2L, 2L, 2L), .Label = c("1", "2", "3", "Missing[]"), class = "factor")), .Names = c("searchType", "roomMin", "roomMax", "priceMin", "priceMax", "sizeMin", "sizeMax", "longitude", "latitude", "specificSearch", "objectType"), row.names = c(60656L, 66897L, 130650L), class = "data.frame")

Thank you!

EDIT: it seems that the error/difference occurs because there are NAs in the numeric columns and they seem to be treated differently. How can I adapt daisy's treatment of NAs to gower.dist?

www
  • 38,575
  • 12
  • 48
  • 84
Vanessa
  • 33
  • 1
  • 6
  • http://stats.stackexchange.com/questions/123624/gower-distance-with-r-functions-gower-dist-and-daisy will help you – KenHBS Oct 26 '16 at 14:36
  • Thank you for the link, I've already seen that post before. However, it does not really help me, the problem is a different one and knowing that it should result in the same distance matrix is also not helping.. My variables are of types factor and numerics and both should be treated equivalently in daisy and gower.dist – Vanessa Oct 27 '16 at 06:47

1 Answers1

2

It's due to the NA values in the numeric columns of your data frame. Consider the following code, to see how the two functions behave completely differently with a numeric column with NA values (daisy is more robust that gower.dist):

df1 <- rbind(df,cent)
head(df1)
       searchType roomMin roomMax priceMin priceMax sizeMin sizeMax longitude latitude specificSearch objectType
112457       <NA>      20      30       NA       35      50     100   6.63060 46.52425              0       <NA>
94601           1      10      30       73       11      50      75   7.47195 46.95120              0          2
78273           1      10    <NA>       60        1      50      50   8.55620 47.37515              0          2
59172           1      30      50       29       62      75     150        NA       NA              0          2
117425          1      30      40       11       23      75     100   8.56900 47.39290              0          2
60656           1      10      20       60      103     100     100   8.30150 47.05485              0          2

# only use the numeric column priceMin (4th column) to compute the distance
class(df1[,4])
# [1] "numeric"
df2 <- df1[4]

# daisy output
as.matrix(daisy(df2,metric="gower")) 
        112457     94601     78273      59172    117425     60656      66897    130650
112457      0        NA        NA         NA        NA        NA         NA        NA
94601      NA 0.0000000 0.2096774 0.70967742 1.0000000 0.2096774 0.64516129 0.0000000
78273      NA 0.2096774 0.0000000 0.50000000 0.7903226 0.0000000 0.43548387 0.2096774
59172      NA 0.7096774 0.5000000 0.00000000 0.2903226 0.5000000 0.06451613 0.7096774
117425     NA 1.0000000 0.7903226 0.29032258 0.0000000 0.7903226 0.35483871 1.0000000
60656      NA 0.2096774 0.0000000 0.50000000 0.7903226 0.0000000 0.43548387 0.2096774
66897      NA 0.6451613 0.4354839 0.06451613 0.3548387 0.4354839 0.00000000 0.6451613
130650     NA 0.0000000 0.2096774 0.70967742 1.0000000 0.2096774 0.64516129 0.0000000

# gower.dist output
gower.dist(df2)
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,]  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN
[2,]  NaN    0    0    0    0    0    0    0
[3,]  NaN    0    0    0    0    0    0    0
[4,]  NaN    0    0    0    0    0    0    0
[5,]  NaN    0    0    0    0    0    0    0
[6,]  NaN    0    0    0    0    0    0    0
[7,]  NaN    0    0    0    0    0    0    0
[8,]  NaN    0    0    0    0    0    0    0

Fix this with the parameter rngs in gower.dist function:

gower.dist(df2, rngs=max(df2, na.rm=TRUE) - min(df2, na.rm=TRUE))
     [,1]      [,2]      [,3]       [,4]      [,5]      [,6]       [,7]      [,8]
[1,]  NaN       NaN       NaN        NaN       NaN       NaN        NaN       NaN
[2,]  NaN 0.0000000 0.2096774 0.70967742 1.0000000 0.2096774 0.64516129 0.0000000
[3,]  NaN 0.2096774 0.0000000 0.50000000 0.7903226 0.0000000 0.43548387 0.2096774
[4,]  NaN 0.7096774 0.5000000 0.00000000 0.2903226 0.5000000 0.06451613 0.7096774
[5,]  NaN 1.0000000 0.7903226 0.29032258 0.0000000 0.7903226 0.35483871 1.0000000
[6,]  NaN 0.2096774 0.0000000 0.50000000 0.7903226 0.0000000 0.43548387 0.2096774
[7,]  NaN 0.6451613 0.4354839 0.06451613 0.3548387 0.4354839 0.00000000 0.6451613
[8,]  NaN 0.0000000 0.2096774 0.70967742 1.0000000 0.2096774 0.64516129 0.0000000

Hence a way to make the function gower.dist work like daisy when NAs are present in numeric variables can be like the following one:

df1 <- rbind(df,cent)

# compute the ranges of the numeric variables correctly
cols <- which(sapply(df1, is.numeric))
rngs <- rep(1, ncol(df1))
rngs[cols] <- sapply(df1[cols], function(x) max(x, na.rm=TRUE) - min(x, na.rm=TRUE)) 

daisyDist <- as.matrix(daisy(df1,metric="gower"))
gowerDist <- gower.dist(df1)

daisyDist
          112457     94601     78273     59172    117425     60656     66897    130650
112457 0.0000000 0.3951059 0.6151851 0.7107843 0.6397059 0.6424374 0.3756990 0.1105551
94601  0.3951059 0.0000000 0.2355126 0.5788530 0.5629176 0.4235379 0.3651002 0.2199324
78273  0.6151851 0.2355126 0.0000000 0.5122549 0.4033046 0.3500130 0.3951874 0.3631533
59172  0.7107843 0.5788530 0.5122549 0.0000000 0.2969639 0.5446623 0.4690421 0.5657812
117425 0.6397059 0.5629176 0.4033046 0.2969639 0.0000000 0.4638003 0.4256891 0.4757460
60656  0.6424374 0.4235379 0.3500130 0.5446623 0.4638003 0.0000000 0.5063082 0.4272755
66897  0.3756990 0.3651002 0.3951874 0.4690421 0.4256891 0.5063082 0.0000000 0.2900150
130650 0.1105551 0.2199324 0.3631533 0.5657812 0.4757460 0.4272755 0.2900150 0.0000000

gowerDist
          [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]      [,8]
[1,] 0.0000000 0.3951059 0.6151851 0.7107843 0.6397059 0.6424374 0.3756990 0.1105551
[2,] 0.3951059 0.0000000 0.2355126 0.5788530 0.5629176 0.4235379 0.3651002 0.2199324
[3,] 0.6151851 0.2355126 0.0000000 0.5122549 0.4033046 0.3500130 0.3951874 0.3631533
[4,] 0.7107843 0.5788530 0.5122549 0.0000000 0.2969639 0.5446623 0.4690421 0.5657812
[5,] 0.6397059 0.5629176 0.4033046 0.2969639 0.0000000 0.4638003 0.4256891 0.4757460
[6,] 0.6424374 0.4235379 0.3500130 0.5446623 0.4638003 0.0000000 0.5063082 0.4272755
[7,] 0.3756990 0.3651002 0.3951874 0.4690421 0.4256891 0.5063082 0.0000000 0.2900150
[8,] 0.1105551 0.2199324 0.3631533 0.5657812 0.4757460 0.4272755 0.2900150 0.0000000
Sandipan Dey
  • 21,482
  • 2
  • 51
  • 63
  • Dear sandipan, thank you for your reply! Doesn't setting NA in numerical columns equal to zero change the result when comparing distances between two matrices? As I read, if NA is present in a cell, the 0-1 weight of this distance for the whole row is equal to zero. However, if the value itself is zero, the distance might be something else than zero und the 0-1 weight equals 1, thus leading to not exclude this wrong distance from the sum for the complete row. – Vanessa Oct 27 '16 at 11:25
  • I see what you are saying @Vanessa, let me update the solution with some more thoughts. – Sandipan Dey Oct 27 '16 at 11:34
  • @Vanessa updated with the corrected answer, we need to provide the ranges of the numeric variables correctly to make gower.dist work properly, otherwise it does not automatically remove NAs, which is kind of weird. Glad that you asked the question. – Sandipan Dey Oct 27 '16 at 12:03
  • Thank you so much!! To be have it completely correct it should be: rngs[cols] <- sapply(rbind(df[cols],cent[cols]), function(x) max(x, na.rm=TRUE) - min(x, na.rm=TRUE)) gowerDist <- gower.dist(cent,df,rngs) – Vanessa Oct 27 '16 at 12:33
  • @Vanessa: I merged the two data frames at the very first place: df1 <- rbind(df,cent) and then worked with the merged data frame df1 – Sandipan Dey Oct 27 '16 at 12:36
  • Oh I see, sorry then. Thanks for your help. – Vanessa Oct 27 '16 at 12:54