I want to calculate the distances (dissimilarities) between the rows of two data frames in order to find the closest cluster for each observation. Because I have factors and numerical variables, I'm using Gower distance. As I want to compare two data frames (and not the dissimilarities between the rows of one matrix), gower.dist would be the function I need. However, when I implemented it, I realized that the results differ from the ones I get when I use daisy's gower, having the rows bound together and looking at the part of the dissimilarity matrix of interest.
I only provide a sample of my data here but when I calculated the dissimilarities with all data, gower.dist often resulted in dissimilarities of zero although the corresponding rows were not equal to each other. Why? And what could be the reason for the different results? In my opinion, daisys's gower is working correct and gower.dist isn't (in this example).
library(cluster)
library(StatMatch)
# Calculate distance using daisy's gower
daisyDist <- daisy(rbind(df,cent),metric="gower")
daisyDist <- as.matrix(daisyDist)
daisyDist <- daisyDist[(nrow(df)+1):nrow(daisyDist),1:nrow(df)] #only look at part where rows from df are compared to (rows of) cent
# Calculate distance using dist.gower
gowerDist <- gower.dist(cent,df)
with the following data
df <- structure(list(searchType = structure(c(NA, 1L, 1L, 1L, 1L), .Label = c("1", "2"), class = "factor"), roomMin = structure(c(4L, 1L, 1L, 6L, 6L), .Label = c("10", "100", "150", "20", "255", "30", "40", "50", "60", "70", "Missing[NoInput]"), class = "factor"), roomMax = structure(c(8L, 8L, NA, 10L, 9L), .Label = c("10", "100", "120", "150", "160", "20", "255", "30", "40", "50", "60", "70", "80", "90", "Missing[NoInput]"), class = "factor"), priceMin = c(NA, 73, 60, 29, 11), priceMax = c(35, 11, 1, 62, 23), sizeMin = structure(c(5L, 5L, 5L, 6L, 6L), .Label = c("100", "125", "150", "250", "50", "75", "Missing[NoInput]"), class = "factor"), sizeMax = structure(c(1L, 6L, 5L, 3L, 1L), .Label = c("100", "125", "150", "250", "50", "75", "Missing[NoInput]"), class = "factor"), longitude = c(6.6306, 7.47195, 8.5562, NA, 8.569), latitude = c(46.52425, 46.9512, 47.37515, NA, 47.3929), specificSearch = structure(c(1L, 1L, 1L, 1L, 1L), .Label = c("0", "1"), class = "factor"), objectType = structure(c(NA, 2L, 2L, 2L, 2L), .Label = c("1", "2", "3", "Missing[]"), class = "factor")), .Names = c("searchType", "roomMin", "roomMax", "priceMin", "priceMax", "sizeMin", "sizeMax", "longitude", "latitude", "specificSearch", "objectType"), row.names = c(112457L, 94601L, 78273L, 59172L, 117425L), class = "data.frame")
cent <- structure(list(searchType = structure(c(1L, 1L, 1L), .Label = c("1", "2"), class = "factor"), roomMin = structure(c(1L, 4L, 4L), .Label = c("10", "100", "150", "20", "255", "30", "40", "50", "60", "70", "Missing[NoInput]"), class = "factor"), roomMax = structure(c(6L, 9L, 8L), .Label = c("10", "100", "120", "150", "160", "20", "255", "30", "40", "50", "60", "70", "80", "90", "Missing[NoInput]"), class = "factor"), priceMin = c(60, 33, 73), priceMax = c(103, 46, 23), sizeMin = structure(c(1L, 5L, 5L), .Label = c("100", "125", "150", "250", "50", "75", "Missing[NoInput]"), class = "factor"), sizeMax = structure(c(1L, 2L, 1L), .Label = c("100", "125", "150", "250", "50", "75", "Missing[NoInput]"), class = "factor"), longitude = c(8.3015, 7.42765, 7.6104), latitude = c(47.05485, 46.9469, 46.75125), specificSearch = structure(c(1L, 1L, 1L), .Label = c("0", "1"), class = "factor"), objectType = structure(c(2L, 2L, 2L), .Label = c("1", "2", "3", "Missing[]"), class = "factor")), .Names = c("searchType", "roomMin", "roomMax", "priceMin", "priceMax", "sizeMin", "sizeMax", "longitude", "latitude", "specificSearch", "objectType"), row.names = c(60656L, 66897L, 130650L), class = "data.frame")
Thank you!
EDIT: it seems that the error/difference occurs because there are NAs in the numeric columns and they seem to be treated differently. How can I adapt daisy's treatment of NAs to gower.dist?