I was doing CIFAR-10 training on CPU with Tensorflow. During the first few rounds, the loss seemed alright. But after the step 10210 the loss varies and ends up becoming NaN.
My network model the CIFAR-10 CNN model from their website. Here is my setting,
image_size = 32
num_channels = 3
num_classes = 10
num_batches_to_run = 50000
batch_size = 128
eval_batch_size = 64
initial_learning_rate = 0.1
learning_rate_decay_factor = 0.1
num_epochs_per_decay = 350.0
moving_average_decay = 0.9999
and the result is shown as below.
2017-05-12 21:53:05.125242: step 10210, loss = 4.99 (124.9 examples/sec; 1.025 sec/batch)
2017-05-12 21:53:13.960001: step 10220, loss = 7.55 (139.5 examples/sec; 0.918 sec/batch)
2017-05-12 21:53:23.491228: step 10230, loss = 6.63 (149.5 examples/sec; 0.856 sec/batch)
2017-05-12 21:53:33.355805: step 10240, loss = 8.08 (113.3 examples/sec; 1.129 sec/batch)
2017-05-12 21:53:43.007007: step 10250, loss = 7.18 (126.7 examples/sec; 1.010 sec/batch)
2017-05-12 21:53:52.650118: step 10260, loss = 16.61 (138.0 examples/sec; 0.928 sec/batch)
2017-05-12 21:54:02.537279: step 10270, loss = 9.60 (137.6 examples/sec; 0.930 sec/batch)
2017-05-12 21:54:12.390117: step 10280, loss = 46526.25 (145.5 examples/sec; 0.880 sec/batch)
2017-05-12 21:54:22.060741: step 10290, loss = 133479743509972411931057146822656.00 (130.4 examples/sec; 0.982 sec/batch)
2017-05-12 21:54:31.691058: step 10300, loss = nan (115.8 examples/sec; 1.105 sec/batch)
Any idea about the NaN loss?