I had some problems using the code in @finw's answer. I believe they were mostly due to the fact that to do a CIELab conversion you should specify an illuminant:
http://en.wikipedia.org/wiki/Standard_illuminant
One of the popular standards is D50, which is basically just a standard daylight. Because @finw's code doesn't have the correction for illumination, the colors that are supposed to be neutral gray come out slightly tinted. One way of checking this is to try:
float[] g = { 50.0f, 0f, 0f };
CIELab.getInstance().toRGB(g);
for (float f : g) System.out.println(f);
You should get roughly the same number on all three channels, but you end up with an RGB profile that's noticeably (albeit slightly) blue. I'm sure it is possible to correct this in @finw's code, but after a bit of playing with it and searching around, I found some excellent conversion code here:
http://www.f4.fhtw-berlin.de/~barthel/ImageJ/ColorInspector//HTMLHelp/farbraumJava.htm
For completeness, here it is.
public void rgb2lab(int R, int G, int B, int[] lab) {
//http://www.brucelindbloom.com
float r, g, b, X, Y, Z, fx, fy, fz, xr, yr, zr;
float Ls, as, bs;
float eps = 216.f/24389.f;
float k = 24389.f/27.f;
float Xr = 0.964221f; // reference white D50
float Yr = 1.0f;
float Zr = 0.825211f;
// RGB to XYZ
r = R/255.f; //R 0..1
g = G/255.f; //G 0..1
b = B/255.f; //B 0..1
// assuming sRGB (D65)
if (r <= 0.04045)
r = r/12;
else
r = (float) Math.pow((r+0.055)/1.055,2.4);
if (g <= 0.04045)
g = g/12;
else
g = (float) Math.pow((g+0.055)/1.055,2.4);
if (b <= 0.04045)
b = b/12;
else
b = (float) Math.pow((b+0.055)/1.055,2.4);
X = 0.436052025f*r + 0.385081593f*g + 0.143087414f *b;
Y = 0.222491598f*r + 0.71688606f *g + 0.060621486f *b;
Z = 0.013929122f*r + 0.097097002f*g + 0.71418547f *b;
// XYZ to Lab
xr = X/Xr;
yr = Y/Yr;
zr = Z/Zr;
if ( xr > eps )
fx = (float) Math.pow(xr, 1/3.);
else
fx = (float) ((k * xr + 16.) / 116.);
if ( yr > eps )
fy = (float) Math.pow(yr, 1/3.);
else
fy = (float) ((k * yr + 16.) / 116.);
if ( zr > eps )
fz = (float) Math.pow(zr, 1/3.);
else
fz = (float) ((k * zr + 16.) / 116);
Ls = ( 116 * fy ) - 16;
as = 500*(fx-fy);
bs = 200*(fy-fz);
lab[0] = (int) (2.55*Ls + .5);
lab[1] = (int) (as + .5);
lab[2] = (int) (bs + .5);
}
In my tests, it produces gray values that are appropriately chroma-free, and it is much speedier to boot.