How can a Tensorflow feature_column
be used in conjunction with a Keras model?
E.g. for a Tensorflow estimator, we can use an embedding column from Tensorflow Hub:
embedded_text_feature_column = hub.text_embedding_column(
key="sentence",
module_spec="https://tfhub.dev/google/nnlm-en-dim128/1")
estimator = tf.estimator.DNNClassifier(
hidden_units=[100],
feature_columns=[embedded_text_feature_column],
n_classes=2,
optimizer=tf.train.AdamOptimizer(learning_rate=0.001))
However, I would like to use the TF Hub text_embedding_column
as input to a Keras model. E.g.
net = tf.keras.layers.Input(...) # use embedding column here
net = tf.keras.layers.Flatten()
net = Dense(100, activation='relu')(net)
net = Dense(2)(net)
Is this possible?