I got a basic idea of Big-O notation from Big-O notation's definition.
In my problem, a 2-D surface is divided into uniform M grids. Each grid (m) is assigned with a posterior probability based on A features.
The posterior probability of m grid is calculated as follows:
and the marginal likelihood is given as:
Here, A features are independent of each other and sigma and mean symbol represent the standard deviation and mean value of each a feature at each grid. I need to calculate the Posterior probability of all M grids.
What will be the time complexity of the above operation in terms of Big-O notation?
My guess is O(M) or O(M+A). Am I correct? I'm expecting an authenticate answer to present at the formal forum.
Also, what will be the time complexity if M grids are divided into T clusters where every cluster has Q grids (Q << M) (calculating Posterior Probability only on Q grids out of M grids) ?
Thank you very much.