In my dataframe:.
df = pd.DataFrame(zip(datetimes, from_, message), columns=['timestamp', 'sender', 'message'])
df['timestamp'] = pd.to_datetime(df.timestamp, format='%d/%m/%Y, %I:%M %p')
There are some problematic values, defined by a clear pattern:
timestamp sender message
113381 2020-06-04 11:59:24 Jose bom te ver feliz\r\n
113382 2020-06-04 11:59:29 Jose ❤\r\n
113383 2020-06-04 11:59:40 Maria Estar bem com você me faz feliz\r\n
113384 2020-06-04 12:00:57 Maria Estava falando com uma amiga de infância aque...
113385 2020-06-04 12:01:14 Maria Ela teve uma briga feia com o marido\r\n
113386 2020-06-04 12:01:24 Maria: <attached 00113509-PHOTO-2020-06-04-12-01-25.jpg>\r\n
113387 2020-06-04 12:02:54 Maria e assim leva-se a vida, um\n
113388 2020-06-04 12:03:21 Maria Pelo menos ela riu isso ajuda\r\n
113389 2020-06-04 13:06:39 Jose: <attached 00113512-PHOTO-2020-06-04-13-06-40.jpg>\r\n
Names will always vary, and could well be:
John
John: <attached
Mary
Mary: <attached
But : <attached
will always be there.
How do I perform string replacement which corrects that, independently of the string, ending up with:
timestamp sender message
113381 2020-06-04 11:59:24 Jose bom te ver feliz\r\n
113382 2020-06-04 11:59:29 Jose ❤\r\n
113383 2020-06-04 11:59:40 Maria Estar bem com você me faz feliz\r\n
113384 2020-06-04 12:00:57 Maria Estava falando com uma amiga de infância aque...
113385 2020-06-04 12:01:14 Maria Ela teve uma briga feia com o marido\r\n
113386 2020-06-04 12:01:24 Maria 00113509-PHOTO-2020-06-04-12-01-25.jpg>\r\n
113387 2020-06-04 12:02:54 Maria e assim leva-se a vida, um\n
113388 2020-06-04 12:03:21 Maria Pelo menos ela riu isso ajuda\r\n
113389 2020-06-04 13:06:39 Jose 00113512-PHOTO-2020-06-04-13-06-40.jpg>\r\n