Im trying to impute NaN values but,first i want to check the best method to calculate this values. Im new using this methods, so im want to use a code i found to capare the differents regressors and choose the best. The original code is this:
from sklearn.experimental import enable_iterative_imputer # noqa
from sklearn.datasets import fetch_california_housing
from sklearn.impute import SimpleImputer
from sklearn.impute import IterativeImputer
from sklearn.linear_model import BayesianRidge
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import cross_val_score
N_SPLITS = 5
rng = np.random.RandomState(0)
X_full, y_full = fetch_california_housing(return_X_y=True)
# ~2k samples is enough for the purpose of the example.
Remove the following two lines for a slower run with different error bars.
X_full = X_full[::10]
y_full = y_full[::10]
n_samples, n_features = X_full.shape
fetch_california_housing is his Dataset.
So, when i try to adapt this code to my case i wrote this code:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from numpy import genfromtxt
data = genfromtxt('documents/datasets/df.csv', delimiter=',')
features = data[:, :2]
targets = data[:, 2]
N_SPLITS = 5
rng = np.random.RandomState(0)
X_full, y_full = data(return_X_y= True)
# ~2k samples is enough for the purpose of the example.
# Remove the following two lines for a slower run with different error bars.
X_full = X_full[::10]
y_full = y_full[::10]
n_samples, n_features = X_full.shape
I always get the same error:
AttributeError: 'numpy.ndarray' object is not callable
and before I used my DF as csv (df.csv) the error is the same
AttributeError: 'Dataset' object is not callable
the complete error is this:
ypeError Traceback (most recent call last) <ipython-input-8-3b63ca34361e> in <module>
3 rng = np.random.RandomState(0) 4
----> 5 X_full, y_full = df(return_X_y=True)
6 # ~2k samples is enough for the purpose of the example.
7 # Remove the following two lines for a slower run with different error bars.
TypeError: 'DataFrame' object is not callable
and i dont know how to solve one of both error to go away
I hope to explain well my problem cause my english is not very good